APLICACIONES CLINICAS DE SISTEMAS DE INDEXACION

Drs. Bruno Günther Sch.* y Víctor Vargas K.**

- * Departamento de Fisiología y Biofísica. Facultad de Medicina. Universidad de Chile. cas: 70005, Santiago
- ** Unidad de Pacientes Críticos. Departamento de Medicina. Hospital Clínico, Universidad de Chile.

SUMMARY

CLINICAL APPLICATIONS OF INDEXATION SYSTEMS.

The clinical applications of standarized physiological functions such as cardiovascular, respiratory and renal systems are discussed.

INTRODUCCION

Cuando hace más de un siglo Max Rubner¹ determinó en siete perros el consumo de oxígeno en condiciones basales, encontró que:

- 1) el consumo de O2 crece a medida que aumenta el peso corporal (kg);
- 2) el metabolismo basal decrece cuando éste se expresa por kilógramo de peso corporal; y
- 3) el metabolismo basal es casi igual (=1143 kcal/24h/m²) cuando los valores experimentales (consumo de 02) se calculan por metro cuadrado de superficie corporal (kcal/24h/m²), tal como se ilustra en la Fig. 1.

LA SUPERFICIE CORPORAL COMO CRITERIO UNICO DE INDEXACION

El cálculo de la superficie corporal (m²) se basa en razones de índole geométrica, por cuanto la superficie (5) de todo cuerpo de volumen (V) es igual a

 $S = k. V^2/^3$ (1)

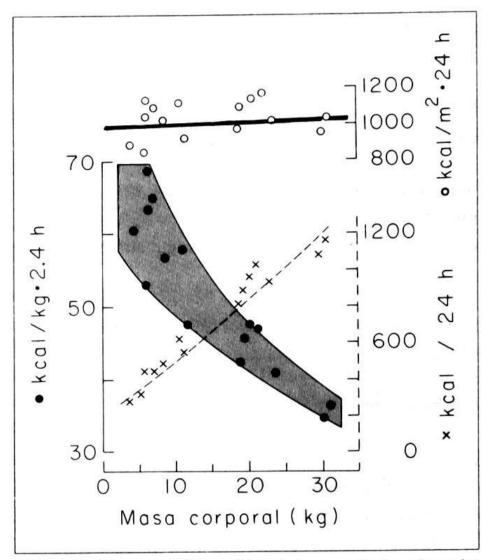


Figura 1. Representación gráfica de los resultados obtenidos por Rubner en mediciones metabólicas (Kcal/24 hrs.) realizadas por duplicado en siete perros de diverso peso corporal (kg). Abscisa masa corporal en kilogramos. Ordenadas de la izquierda (puntos negros) se expresa el metabolismo por unidad de peso (kg-1). Ordenada derecha (abajo), metabolismo basal en kcal/24 hrs. (cruces). Ordenada derecha (arriba), el metabolismo por unidad de superficie corporal (kcal/m2/24 hrs.), indicado como círculos vacíos, y que correspónde a la "Ley de superficie".

Se asume en estos casos que la densidad del cuerpo (d=M/V) es prácticamente igual a la unidad (d = 1.0), de modo que la masa corporal (M) resulta ser proporcional al volumen (V) del cuerpo en estudio. En cuanto al parámetro (k) que figura en la ecuación (1), su valor numérico depende de la «forma» del cuerpo geométrico (shape factor); es así como k= 4.836 para una esfera, k=6.00 para un cubo y k = 10.8 para el cuerpo humano, cuyas formas son preferentemente cilíndricas.

Es de interés señalar, que la «ley de la superficie», que Rubner¹ estableciera en 1883, se basó en sólo 7 experimentos, los que fueron realizados por duplicado en perros de diverso tamaño corporal, de 3.19 kg hasta 31.2 kg. No obstante, esta 'ley» se extrapoló a todos los mamíferos e incluso a la especie humana, siendo aceptada de imnediato por toda la comunidad científica internacional, y prevalece-casi sin discusión - hasta nuestros días, tal como se ilustra en la Tabla I.

METABOLISMO INTERESPECIES

Numerosos estudios sistemáticos realizados en mamíferos, aves, reptiles, anfibios, peces entre otros, demostraron que el exponente de la masa corporal (M) en la ecuación alométrica siguiente:

$$Y = a \cdot M^b \quad (2)$$

no era b= 2/3 como lo exige la geometría euclideana, sino que b = 0.734 (Brody) y b= 0.75 según Kleiber.³

Cuando estas mediciones del consumo de O2 basal se extendieron a homeotermos, poikilotermos y unicelulares (4), se obtuvo en todos los casos un exponente (b) de la masa corporal (M) igual a 0.751.

En vez de considerar como única alternativa la validez de la «ley de la superficie», la que vincula el consumo de O2 (metabolismo) con las pérdidas del calor disipado (termolisis) en la superfície del cuerpo (m²), es posible estudiar otras posibilidades, como ser el análisis dimensional de todas las funciones de los organismos vinculados con la producción de calor (termogénesis) y su aplicación en algunas de las teorías de similitud biológica.

EL ANALISIS DIMENSIONAL

Se deben a Newton (1643-1727) y a Fourier (1768-1830) los criterios del análisis dimensional en física, por cuanto estos autores establecieron un sistema triádico, constituido por la masa (M), la longitud (L) y el tiempo (T) y que se conoce como sistema MLT. Es así como, cualquier función (Y) puede ser definida como el producto de estas tres variables, siendo que cada uno de los tres factores funciona como una

potencia, cuyos exponentes respectivos son a, B, y; de manera que

 $Y=M\alpha L\beta T\gamma$ (3)

tal como aparece en al Tabla II.

TEORIA DE LA SIMILITUD BIOLOGICA

Esta teoría fué formulada en 1927 por Lambert y Teissier⁵ en base a dos postulados.

Primer postulado: La densidad (d) de prototipo y modelo es la misma; de manera que d=M/V=1.0, con lo cual se establece una correlación entre la masa (M) y el volumen (V), y en su defecto, siendo ($V=L^3$) entre la masa (M) y la longitud (L), resultando finalmente que L a $M^1/3$

Segundo postulado: Las longitudes biológicas (L) son proporcionales a los tiempos biológicos (T), con lo que se establece una proporcionalidad entre ambas variables, y por 1/3 consiguiente T a M. Este postulado es de naturaleza teórica (a priori), a diferencia del primer postulado que se basa en observaciones empíricas, desde el momento que todo ser vivo colocado en un medio hídrico, flota en la superficie del agua, con lo que se demuestra que la densidad (d) es prácticamente constante e igual a la del agua (d=1.00).

La ecuación general de la similitud biológica es entonces la siguiente:

 $Y = M\alpha M^{1/3}\beta M 1/3\gamma \qquad (4)$

lo que equivale a

 $Y = M^{\alpha + 1/3\beta + 1/3\gamma} \tag{5}$

En la Tabla III aparece el cálculo del exponente reducido (bR) para 12 variables de interés fisiológico.

En consideración al segundo postulado, es que es necesario confrontar las predicciones numéricas (bR) de dicha teoría con los valores empíricos de los

Tabla I. PARAMETROS HEMODINAMICOS NORMALES

(Todos ellos son estandarizados por metro cuadrado de superficie corporal. (Marino)⁹

PARAMETROS HEMODINAMICOS	RANGOS NORMALES EXPRESADOS POR UNIDAD DE SUPERFICIE (m²)	
Indice cardíaco (CI)	2.5 - 3.5 l/min/m ²	
Indice del volumen expulsivo (SVI)	36 - 48 ml/latido / m ²	
Indice del trabajo sistólico del ventrículo izquierdo (LVSWI)	44 - 56 gm. m/m²	
Indice del trabajo sistólico del ventrículo derecho(RVSWI)	7 - 10 gm. m/m ²	
Indice de la resistencia vascular sistémica (SVRI)	1200 - 2500 dinas. seg/cm ⁵ / m ²	
Indice de la resistencia vascular pulmonar (PVRI)	80 - 240 dinas. seg/cm x m	
Transporte de oxígeno (DO ₂)	520 - 720 ml/min. m ²	
Consumo de oxígeno (VO ₂)	110 - 160 ml/min. m ²	
Razón de extracción del oxígeno (O ₂ ER)	22 - 32%	

exponentes alométricos (bE) para lo cual se analizó estadísticamente (regresión lineal) un conjunto 203 exponentes alométricos que aparecen en la literatura (6), resultando que

$$b_R = 0.96\alpha + 0.35 \beta + 0.30\gamma$$
 (6)

una ecuación muy parecida a la formulación original de Lambert y Teissier⁵

$$b_{R} = \alpha + 0.33 \beta + 0.33 \gamma$$
 (7)

Es de interés señalar, que la concordancia entre ambos

valores (bR y bE) es muy satisfactoria, como lo revela el coeficiente de correlacion $r^2 = 0.997$. Solamente en el item 3, referente a los períodos biológicos, existe una ligera discrepancia (b= 0.30 versus b= 0.247); empero, el error estandard (SE) es en el segundo caso relativamente grande (0.049) y por ello, la diferencia entre ambos valores promedio no es significativa.

INDEXACION ALOMETRICA

En vez de la indexación o estandarización convencional en donde toda función es expresada por m² de superficie corporal, es más racional utilizar la

Tabla II

Análisis dimensional de 12 variables físicas de interés biológico.

Item	Variable	Definición física	Dimensión (MLT)	M a	L b	T g
1	Masa	Cantidad de materia	Мс	1	0	0
2	Longitud	Unidad fundamental del espacio	L	0	1	0
3	Tiempo	Duración de un ciclo completo	Т	0	0	1
4	Area	Longitud al cuadrado	L^2	0	2	0
5	Volumen	Longitud al cubo	L^3	0	3	0
6	Flujo	Volumen por unidad de tiempo	L^3T^1	0	3	- 1
7	Frecuencia	Inversa de un período	\mathbf{T}^{1}	0	0	- 1
8	Fuerza	Masa por aceleración	MLT	1	1	-2
9	Energía	Fuerza por distancia	ML^2T^2	1	2	-2
10	Potencia	Trabajo por unidad de tiempo	ML^2T^3	1	2	-3
11	Presión	Fuerza por unidad de área	ML- ¹ T- ²	1	-1	-2
12	Resistencia	Gradiente de presión por unidad de flujo	ML-1T-2 T-1	1	-4	- 1

expresión alométrica específica para cada función, por cuanto si se depeja el parámetro (a) de la ecuación alométrica de Huxley7 resultará lo siguiente : (7)

$$\begin{array}{c}
Y \\
a = \underline{\hspace{1cm}} = NIM \\
Mb
\end{array} (8)$$

de modo que el valor numérico del parámetro (a),

cuando la masa corporal (M) es de 1 kg, nos dará un NIM que servirá para caracterizar a dicha función, cualesquiera sea la masa corporal (M).

Los valores numéricos de la masa (M) con los posibles exponentes (exp) de interés biológico se encuentran en la Tabla IV.

Tabla III

Exponentes dimensionales según sistema MLT de 12 funciones y cálculo del exponente reducido (bR) según ecuación (6) y comparación entre los exponentes calculados, (bR) y los valores empíricos (10).

Item	Variables	Exponentes		Según ecuación (6)		Exponente (b)			
		α	β	γ	0.96α	0.35β	0.30γ	Reducido (bR)	Empírico* (M±SE)
1	Masa	1	0	0	0.96	0	0	0.96	1.0±0.001
2	Longitud	0	1	0	0	0.35	0	0.35	0.31 ± 0.009
3	Tiempo	0	0	1	0	0	0.30	0.30	0.247±0.049**
1	Area	0	2	0	0	0.70	0	0.70	0.687±0.013
5	Volumen	0	3	0	0	1.05	0	1.05	1.036±0.008
5	Frecuencia	0	0	-1	0	0	-0.30	-0.30	-0.26±0.005
7	Flujo	0	3	-1	0	1.05	-0.30	0.75	0.768±0.011
3	Energía.								
	Trabajo	1	2	-2	0.96	0.70	-0.60	1.06	1.066±0.03
)	Potencia	1	2	-3	0.96	0.70	-0.90	0.76	0.746±0.007
10	Presión	1	-1	-2	0.96	-0.35	-0.60	0.01	-0.010±0.0017
11	Resistencia	1	-4	-1	0.96	-1.40	-0.30	-0.74	-0.752±0.043
2	Compliance	:							
	(AV/AP)	-1	4	2	-0.96	1.40	0.60	1.04	1.04±0.015

^{*} M + SE = término medio + error standard

ALGUNAS APLICACIONES CLINICAS DE LA INDEXACION ALOMETRICA

Como un ejemplo del cálculo del «índice alométrico», procedamos a comparar la frecuencia cardíaca de un **niño** de un año de edad, cuyo peso corporal es de 10 kg, con la de un adulto de 22 años de edad cuyo peso es de 72 kg. Primeramente, habrá que calcular el exponente b= -0.25 de las respectivas masas corporales, y después se despeja el valor del parámetro (a) de acuerdo a la ecuación 8. En el primer caso (véase Tabla IV) tendremos para el niño: (10) -0.25 = 0.5623, y para una frecuencia cardíaca de 11 1/minuto la siguiente razón:

NIM = 111/0.5623 = 197.4

Por otra parte, para el **adulto** tendremos $(72)^{-0.25}$ = 0.3433, lo que permite calcular el correspondiente NIM, sabiendo que la frecuencia cardíaca es de 74/0.3433 = 215.5.

La razón entre ambas cifras (215.5/197.4 = 1.09) nos dará un valor que en este caso es muy cercano a la unidad, con lo que se confirma la igualdad de ambos NIM.

Para cada función y de acuerdo al análisis dimensional especificado en las Tablas II y III, es posible calcular los NIM, un procedimiento que difiere substancialmente del método tradicional, en donde todas las funciones son estandarizadas de acuerdo a un solo criterio, la superficie corporal expresada por metro cuadrado, lo que equivale a decir, que en todos los casos el exponente alométrico de la masa (M) debe ser b = 0.66 (ley de la superficie).

Es así como los NIM para las cuatro categorías de funciones, mencionadas en la Tabla III y la Tabla V, se calculan como sigue:

1) Período biológico = Duración de 1 ciclo (seg)

Masa (kg) exp (0.25)

^{**} Valores segun Calder11

Tabla IV.

Valores numéricos para 5 exponentes (exp) alométricos diferentes en función de la masa corporal (M) en kilogramos

M (kg)	exp 0,25	exp 0,66	exp 0,75	exp -0,25	exp -0,7
1	1,0000	1,0000	1,0000	1,0000	1,0000
	1,1892	1,5801	1,6818	0,8409	0,5948
3	1,3161	2,0649	2,2795	0,7598	0,4387
2 3 4	1,4142	2,4667	2,8264	0,7071	0,3338
5	1,4953	2,8926	3,3437	0,8687	0,2991
	1,5651	3,2827	3,8337	0,6389	0,2608
7	1,8268	3,6121	4,3035	0,6148	0,2324
,	1,6818	3,9449	4,7586	0,5946	0,2102
6 7 8 9	1,7321	4,2638	5,1982	0,5774	0,1925
10	1,7763	4,5709	5,6234	0,5823	0,1778
11	1,8212	4,8676	6,0401	0,5491	0,1868
12	1,8612	5,1554	6,4474	0,5373	0,1551
13	1,8966	5,4350	6,8483	0,5266	0,1481
	1,9343	5,7075	7,2376	0,5170	0,1382
14		5,9734	7,6220	0,5081	0,1312
15	1,9680		8,0000	0,5000	0,1250
16	2,0000	6,2333	8,3721	0,4925	0,1194
17	2,0005	6,4878		0,4855	0,114
18	2,0598	6,7372	8,7389	0,4790	0,1099
19	2,0878	6,9820	9,1005		0,1053
20	2,1147	7,2224	9,4574	0,4729	0,103
21	2,1407	7,4567	9,8099	0,4671	
22	2,1657	7,6913	10,1582	0,4817	0,0964
23	2,1899	7,9203	10,5026	0,4586	0,0952
24	2,2134	8,1459	10,8432	0,4518	0,0922
25	2,2361	8,3684	11,1803	0,4472	0,0994
26	2,2581	8,5878	11,5141	0,4429	0,0869
27	2,2795	8,8044	11,8447	0,4387	0,0844
26	2,3003	9,0183	12,1722	0,4347	0,0822
29	2,3206	9,2296	12,4668	0,4309	0,0000
30	2,3403	9,4384	12,8186	0,4273	0,0780
31	2,3596	9,6449	13,1378	0,4238	0,0761
32	2,3784	9,8492	13,4443	0,4204	0,0743
33	2,3968	10,0512	13,7685	0,4172	0,0720
34	2,4147	10,2512	14,0802	0,4141	0,0710
35	2,4323	10,4492	14,3897	0,4111	0,0693
36	2,4495	10,6453	14,6969	0,4062	0,0680
37	2,4683	10,8996	15,0021	0,4055	0,066
38	2,4826	11,0321	15,3052	0,4026	0,0653
39	2,4660	11,2228	15,6662	0,4002	0,064
40	2,5149	11,4119	15,9054	0,3976	0,0629
41	2,5304	11,5984	16,2027	0,3952	0,081
42	2,5457	11,7854	16,4662	0,3926	0,060
	2,5607	11,9699	16,7920	0,3905	0,0598
43	2,5755	12,1529	17,0840	0,3863	0,0585
44	2,5900	12,3345	17,3744	0,3861	0,0576
45	2,6043	12,5147	17,6632	0,3840	0,0586
46	2,6163	12,6936	17,9504	0,3819	0,055
47		12,8712	18,2361	0,3799	0,0548
48	2,6321	13,0476	18,5203	0,3780	0,0540
49	2,6458	13,2227	18,8030	0,3761	0,0532
50	2,8681	13,2221	10,000		, , , , ,

Tabla IV. (continuación)
valores numéricos para 5 exponentes (exp) alométricos diferentes en función de la masa
corporal (M) en kilogramos

M(kg)	exp 0,25	exp 0,66	exp 0,75	exp-0,25	exp-0,7
51	2,6723	13,3987	19,0844	0,3742	0,0524
52	2,8853	13,5694	19,3643	0,3724	0,0516
53	2,6982	13,7411	19,6430	0,3706	0,0509
	2,7106	13,9117	19,9203	0,3689	0,0502
54 55	2,7233	14,0812	20,1983	0,3872	0,0495
55	2,7356	14,2466	20,4711	0,3656	0,0488
56 57	2,7477	14,4171	20,7447	0,3639	0,0482
	2,7597	14,5835	21,0170	0,3824	0,0476
58	2,7397	14,7490	21,2882	0,3608	0,0470
59	1.5	14,9135	21,5582	0,3593	0,0464
60	2,7832	15,0771	21,8272	0,3578	0,0458
61	2,7947	15,2398	22,0950	0,3664	0,0453
62	2,8081		22,3617	0,3549	0,0447
63	2,8173	15,4016	22,6274	0,3538	0,0442
64	2,8284	15,5625	50.000 f al a f ²⁰ (50.000 f al a f a f a f a f a f a f a f a f a	0,3522	0,0437
65	2,8394	15,7225	22,8921	0,3008	0,0432
68	2,8503	15,8818	23,1557	0,3495	0,0427
67	2,8610	16,0402	23,4183		0,0422
68	2,8716	16,1978	23,6800	0,3482	0,0422
69	2,6821	16,3549	23,9407	0,3470	0,0413
70	2,8925	16,5107	24,2005	0,3457	0,0413
71	2,9028	16,6860	24,4593	0,3445	(5)
72	2,9130	16,8205	24,7172	0,3433	0,0405
73	2,9230	16,9743	24,9742	0,3421	0,0400
74	2,8330	17,1275	25,2304	0,3410	0,0396
75	2,9428	17,2799	25,4857	0,3398	0,0392
76	2,9526	17,4316	25,7401	0,3387	0,0368
77	2,9623	17,5828	25,9937	0,3376	0,036
78	2,9718	17,7330	28,2465	0,3395	0,038
79	2,9813	17,8827	28,4664	0,3334	0,037
80	2,9907	18,0318	28,7466	0,3344	0,0374
81	3,0000	18,1803	27,0000	0,3333	0,037
82	3,0092	18,3281	27,2466	0,3323	0,036
83	3,0183	18,4753	27,4965	0,3313	0,036
84	3,0274	18,6219	27,7466	0,3303	0,036
85	3,0364	18,7679	27,9940	0,3293	0,035
86	3,0453	18,9134	28,2406	0,3284	0,035
87	3,0541	19,0582	28,4665	0,3274	0,035
88	3,0628	19,2005	28,7317	0,3265	0,034
89	3,0715	19,3463	28,9763	0,3256	0,034
90	3,0801	19,4595	29,2201	0,3247	0,034
91	3,0886	19,6321	28,4633	0,3238	0,033
92	3,0970	19,7742	28,7058	0,3229	0,033
93	3,1054	19,9158	28,9476	0,3220	0,033
94	3,1137	20,0569	30,1888	0,3212	0,033
95	3,1220	20,1975	30,4294	0,3203	0,032
	3,1302	20,3376	30,6693	0,3195	0,032
96	10.000 · 10.000 10.000 10.000 10.000	20,4771	30,9086	0,3186	0,032
97	3,1363	20,4771	31,1472	0,3178	0,032
98	3,1463		31,3853	0,3170	0,031
99	3,1543	20,7548	51,5655	0,5170	0,031

- 3) Resist. periférica total = $\frac{\text{RPT (dinas x seg x cm}^{-5})}{\text{Masa (kg) exp (-0.75)}}$
- 4) Volumen= Volemia (ml)
 Masa (kg) exp (1.0)

Para todas las demás funciones valen los exponentes alométricos (exp) que aparecen en la Tabla III y IV.

CONCLUSIONES

Desde que se estableciera en 1883 la «Ley de la superficie», tanto en fisiología como en clínica, las variables metabólicas, respiratorias y renales se estandarizan por metro cuadrado de superficie corporal. Esta modalidad de indexación ha perdurado por más de un siglo a pesar que ella se basa en la «termolisis» (radiación, convección, conducción y

evaporación) que obligatoriamente se realiza en la superficie del cuerpo. No obstante, la "termogénesis" a nivel mitocondrial es el factor determinante del consumo de oxígeno, de la producción de calor y de la síntesis del ATP y por ende de la intensidad metabólica por unidad de masa corporal (kg⁻¹).

A partir del análisis dimensional de la Física es posible desarrollar una teoria de similitud biológica que permite calcular el exponente (b) de la ecuación alométrica de Huxley (1932), según la cual cada función (Y) está relacionada cuantitativamente con la masa corporal (M) de modo que Y= a M^b, siendo el coeficiente (a) de la masa de origen empírico y el exponente (b) se puede decidir teóricamente o bien se calcula estadísticamente en base a los resultados experimentales.

Cada función (Y) tiene un exponente (b) característico y por consiguiente para estandarizar una función hay que tomar en cuenta este hecho. El

Tabla 5
CALCULO DEL EXPONENTE REDUCIDO (bR) PARA CUATRO CATEGORIAS DE VARIABLES FISIOLOGICAS.

Variable	Dimensión física (MLT)	Cálculo del exponente (bR)	Valor final del exponente reducido (bR)
Duración	Т	0+0+0.30	0.30
Metabolismo	$-\overline{ML^2T^{-3}}$	0.96+0.70-O. 90	0.76
Frecuencia	T¹		
Resistencia periférica	ML- ⁴ T- ¹	0.96-1.40-0.30	-0.74
Volumen	L^3	0+1.05+0	1.05
Velocidad	LT-1	0+0.35-0.30	0.05
	Duración de un ciclo Metabolismo Frecuencia Resistencia periférica Volumen	física (MLT) Duración de un ciclo Metabolismo ML²T-³ Frecuencia Resistencia periférica ML-⁴T-¹ Volumen L³	física exponente (bR) Duración T 0+0+0.30 de un ciclo Metabolismo ML²T-³ 0.96+0.70-0.90 Frecuencia T¹ 0+0-0.30 Resistencia periférica ML-⁴T-¹ 0.96-1.40-0.30 Volumen L³ 0+1.05+0

resultado de la indexación alométrica es un "numero invariante de la masa" (NIM), es decir, se obtiene una cifra constante, cualquiera sea la magnitud de dicha variable (M en kg).

La indexación alométrica no sólo es aplicable a la fisiología comparada sino que también es válida para la evaluación cuantitativa de las funciones en clínica y como ejemplo se compara la frecuencia cardíaca de un niño con la de un adulto, en que se demuestra que ambos NIM son prácticamente iguales. Este criterio es aplicable a cualquiera otra función: metabolismo, resistencia periférica, volumen sistólico o volumen de aire corriente, entre otros.

AGRADECIMIENTOS

Los autores agradecen al Prof. Dr. Enrique Morgado, por la elaboración de la Tabla IV. y a las señoritas Lucy de la Peña y Elizabeth Cárdenas por su eficiente colaboración en el procesamiento de este manuscrito.

REFERENCIAS

- RUBNER, M.: Üeber den Einfluss der Köpergrösse auf Stoff-und Kraftwechsel. Z. Biol. 1883; 19:535-62.
- BRODY, S,: Bioenergetics and Growth, with Special References to tile Efficiency Complex in Domestic Animals. New York: Reinhold, 1945.
- 3. KLEIBER, M.: The Fire of Life. An Introduction to Animal Energetics. New York: Wiley, 1961.

- 4. HEMMINGSEN, AM.: The relation of standard (basal) energy metabolism to total fresh weight of living organism Rep.Steno.Mem. Hosp., Copenhagen. 1950; 4:1-110
- 5. LAMBERT, R, TEISSIER, G.: Théorie de la similitude biologique. Ann Physiol (Paris) 1927; 3:212-246,
- GÜNTHER B., GONZALEZ U.; MORGADO E.: Biological similarity theories: a comparison with the empírical allometric equations. Biol Res. 1992;25:7-13.
- 7. HUXLEY, J.S.: Problems of Relative Growth. London: Methuen, 1932.
- 8. ALTMANN, P.L, DITTMER: D: S. (Edit). Biology Data Book. Washington: Federation of American Societies for Experimental Biology, 1964.
- 9. MARINO, P.L.: The ICU Book Lea & Febiger, Philadelphia, 1991. 104.
- 10.PETERS, RH.: The Ecological Implications of Body Size. Cambridge: Cambridge University Press, 1983.
- 11. CALDER, WA.: Size Function and Life History. Cambridge: Harvard University Press, 1983.